HEALTH, SAFETY, AND ELECTRONICS MANUFACTURING

Sean Owen Clancy, Ph.D.

me@seanclancy.org www.seanclancy.org

Overview

- Technical Background
- Safety Training
- Health and Safety in Electronics Manufacturing
- Metal Whiskers
- Unintended Consequences

Technical Background

ACI Technologies, Inc., Philadelphia, PA

• Research Associate: Performed analytical services, failure analysis, technical instruction, and project management of electronics manufacturing programs.

NanoSelect, Inc., Newark, DE

• Staff Scientist: Developed functional coatings on carbon nanotube (CNT) films for water quality sensors.

Naval Air Warfare Center Weapons Division, China Lake, CA

• Postdoctoral Researcher: Developed functional coatings for charge storage (supercapacitor) devices.

University of Southern California, Los Angeles, CA

- Texas A&M University, College Station, TX
 - Graduate Research Assistant: Developed lanthanide-doped organic light-emitting materials for display and telecommunications applications.

Mayo Clinic Jacksonville, Jacksonville, FL

• Research Technologist: Developed small molecules and oligomeric materials for diagnostic tools and therapeutic candidates.

Safety Training

- Safety Training at Many Research Institutions Typically Include:
 - Proper Protective Equipment (PPE)
 - Eyewear, Gloves, Filter Masks, SCBA, Dosimeters, etc.
 - Safe Handling, Storage, and Disposal of Hazardous Materials
 - Acids, Caustics, Chlorinated Solvents, Combustibles, Toxins, etc.
 - Electrostatic- and Shock-Sensitive Materials, e.g. Explosives
 - Waste Minimization Policies
 - Nanomaterials Need for Standard Practices
 - Classes of Fires, Types of Fire Extinguishers
 - Oxygen- and Water-Sensitive Materials, Metal Fires, Radioactive Materials, etc.
 - Water, Carbon Dioxide, Powder Extinguishers, and Sand
 - Nanomaterials have a much higher surface area, creating a fire or explosion hazard, such as with aerosolized metals, like aluminum.

Health and Safety in Electronics Manufacturing

- Reduction of Hazardous Substances (RoHS) Directive from EU
 - Restricts the use of:
 - 1. Lead (Pb)
 - 2. Mercury (Hg)
 - 3. Cadmium (Cd)
 - 4. Hexavalent chromium (Cr⁶⁺)
 - 5. Polybrominated biphenyls (PBB)
 - 6. Polybrominated diphenyl ether (PBDE)

Health and Safety in Electronics Manufacturing

- Waste Electronic & Electrical Equipment (WEEE) Directive from EU
 - The producer of EEE must make sure that it is disposed of in an environmentally sound way, including the treatment, reuse, recovery and recycling of the components where appropriate.
 - The regulations aim to:
 - reduce waste from electrical and electronic equipment
 - encourage the separate collection of WEEE
 - encourage treatment, reuse, recovery, recycling and sound environmental disposal of WEEE
 - make producers of EEE responsible for the environmental impact of their products
 - improve the environmental performance of all those involved during the lifecycle of EEE.

Materials – Metals that Whisker

Zinc Whiskers

- Electroplated (galvanized) with zinc for corrosion protection.
- Found on zinc-electroplated steel underside of raised floor tiles
- Root Cause: compressive stresses

Silver Whiskers

- Current carrying components
- Major environmental factor
 - Relatively low concentration of hydrogen sulfide (H₂S)

Cadmium

- Considered a toxic substance
- Banned from specific applications
- Known to sublimate at temperatures above 75 °C

Courtesy of NASA

Courtesy of Dr. B. Chudnovsky, Schneider Electric/Square D

Materials – Metals that Whisker

Tin Lead (SnPb)

- Requires more stress to generate whisker
- Rarely is found, due to the amount of energy and compressive stress required is high

Tin Bismuth (SnBi) Plating

- Used on component finishes
- Not found on SnBi solder joints

Tin Copper (SnCu) Plating

- Used on component finishes
- Not found on SnCu solder joints

Courtesy of NASA and Motorola

Unintended Consequences

- No drop in replacement for tin-lead solder.
 - Wide variety of lead free solders available and in use.
 - Has different mechanical, thermal, reliability, and whiskering properties, that do not follow the tin-lead models and tin-lead's over 40 years of historical data.
 - New solder materials have unknown reliability, which is of great concern for aerospace, military, and medical device industries.

Unintended Consequences

- A partial list of costly electronic equipment losses and availability losses is highlighted here to underscore the serious risk associated with this whiskering phenomenon.¹
 - Nuclear Utilities Unplanned Shutdown availability loss
 - Space Shuttle Fleet Main Engine Gimbal Avionics availability loss
 - Seven Satellites: complete microprocessor failures hardware loss
 - Patriot Missiles availability loss
 - Six Other Missile Programs: complete failure hardware loss
 - Heart Pacemakers: complete failure hardware loss
 - Heart Defibrillators: complete failure hardware loss
 - F-15 Radar availability loss
 - Several Other Military Planes availability loss
 - Telecom Equipment availability loss